Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[bis(imidazole- κN)copper(II)]-μ-succinato- $\left.\kappa^{2} O: O^{\prime}\right]$

Zhen Wang, Hua Wang,* Xiao-Lei Wang, Shuang Liang and Jin-Yu Han

Key Laboratory for Green Chemical Technology of the State Education Ministry, School of Chemical and Engineering, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
tdhgwanghua@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.026$
$w R$ factor $=0.078$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title polymeric complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, the $\mathrm{Cu}^{\mathrm{II}}$ ion assumes a distorted $\mathrm{CuO}_{2} \mathrm{~N}_{2}$ square-planar coordination geometry formed by two succinate dianions and two imidazole molecules. The $\mathrm{Cu}^{\mathrm{II}}$ complex units are bridged by the succinate dianions, forming polymeric chains.

Comment

The succinate dianion has been widely used as a bridging ligand in the preparation of metal complexes. We present here the structure of the title polymeric $\mathrm{Cu}^{\mathrm{II}}$ complex, (I).

(I)

The coordination environment around the $\mathrm{Cu}^{\mathrm{II}}$ ion in the polymeric structure of (I) is shown in Fig. 1. The $\mathrm{Cu}^{\mathrm{II}}$ ion is

Figure 1

A segment of the polymeric structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) $\left.-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}\right]$.

Received 8 July 2006
Accepted 22 July 2006
located on a general position and assumes a distorted $\mathrm{CuO}_{2} \mathrm{~N}_{2}$ square planar coordination geometry (Table 1), formed by two succinate dianions and two imidazole molecules. The $\mathrm{Cu}^{\mathrm{II}}$ complex units are bridged by the succinate dianions, forming polymeric chains along the b axis. Adjacent chains are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 2).

Experimental

Succinic acid ($10 \mathrm{mmol}, 1.18 \mathrm{~g}$) was added slowly to an aqueous solution (about 25 ml$)$ of $\mathrm{NaOH}(0.80 \mathrm{~g}, 20 \mathrm{mmol})$ with stirring until the pH was $\leq 8.0 . \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(2.42 \mathrm{~g}, 10 \mathrm{mmol})$ was dissolved in water (20 ml) and mixed with the former solution at room temperature; a light-blue precipitate appeared immediately. Solid imidazole ($1.36 \mathrm{~g}, 20 \mathrm{mmol}$) was slowly added with stirring until most of the precipitate had dissolved and the color of the solution was dark blue. The mixture was filtered and the filtrate was allowed to stand at room temperature. Deep-blue single crystals of (I) were obtained by evaporation after one week.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=315.78$
Monoclinic, $P 2_{1} / n$
$a=9.6038(15) \AA$
$b=10.4719$ (17) A
$c=12.790$ (2) A
$\beta=108.154$ (2) ${ }^{\circ}$
$V=1222.3(3) \AA^{3}$

Data collection

Siemens SMART CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.635, T_{\max }=0.695
$$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026\)
\(w R\left(F^{2}\right)=0.078\)
\(S=1.10\)
2155 reflections
172 parameters
H -atom parameters constrained
```


$Z=4$

$D_{x}=1.716 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.80 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, blue
$0.26 \times 0.22 \times 0.20 \mathrm{~mm}$

6063 measured reflections 2155 independent reflections 1859 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0378 P)^{2}\right. \\
+0.3267 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.40 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.983(2)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9933(16)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.991(2)$	$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.0150(16)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$175.72(8)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$89.17(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$90.47(7)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$176.16(7)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 1$	$93.07(7)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	$119.62(15)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$87.16(7)$	$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Cu} 1^{\mathrm{ii}}$	$107.31(14)$

Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{2 i}$	0.86	1.94	$2.777(3)$	165
$\mathrm{~N} 4-\mathrm{H} 4 \cdots 4^{\text {iii }}$	0.86	2.00	$2.781(3)$	151

Symmetry codes: (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x, y+1, z$.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (methylene) and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin. USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

